Design problems with AREVA EPR and the Westinghouse AP1000 (Updated March11, 2014)


Update: This is one of the most popular posts on this blog and so deserves an update. The EPR continues to limp along. The Finland EPR is now bogged down in lawsuits and startup is further delayed; the EPR at Flamanville France is doing only slightly better. These problems I attribute to an overly elaborate design that is very difficult to construct. In fact, AREVA seems to be veering away from the EPR by pushing a newer design. The AECL reactor ACR-1000 as reported elsewhere in this blog is dead. As for the Hitachi ABWR nobody is going to look at it after Fukushima. The good news is that the Westinghouse AP1000 has overcome its initial problems with new construction going well in China and the US. Plans for new reactor construction in various provinces of Canada have all been squelched. As reported here in other posts, the Canadian nuclear enterprise is now focused on refurbishing the Ontario reactors.

In September, I chatted informally with several AREVA people in France about the construction problems the EPR was having in Finland. Many of them blamed the Finns, especially the Finnish nuclear safety agency, as very difficult customers following what appeared to be the AREVA party line. One engineer was perhaps more frank than his colleagues admitting that “it’s been a long time since anyone built a reactor” which is probably close to the truth.  I also had a glimpse of the second EPR under construction at Flamanville on the Normandy coast. It looked to be going well. I left France with the impression that the schedule slippage and cost overruns on the EPR were just first-of-a-kind teething problems to be expected in building what I consider already an overly engineered and too complex reactor.

Imagine then my dismay when soon afterwards when it was reported that the nuclear regulators of the UK, France and Finland declared that the design of the EPR control system was fundamentally flawed. The operating and safety systems seemingly are not independent! Of course, they must be completely independent to provide the necessary high degree of safety. It’s as if they had built a car with the brake and accelerator systems somehow coupled. If the regulatory judgements turn out to be true then this is a momentous blunder in a reactor specifically engineered to ensure a high degree of safety.  If the designers have failed in such a basic principle then what other mistakes have they made? It is reported that AREVA has now lashed up some work-around analogue system but personally I have lost any residual confidence I may have once had in this design. I guess it also shows the Finns are not so dumb after all.

Over in the other corner the Westinghouse AP1000 has been found to have a faulty structural design for the so-called shield building which surrounds the containment structure as a first line of defence against severe storms and other possible impact events. It seems the shield building cannot take the loads that it has to support, especially the thousands of tons of dousing water at the top of the containment. Apparently this problem has been known to US nuclear regulators for at least a year and various tests and possibly redesigns are underway to correct this major flaw.  This again is a disappointing situation.

Is the GE-Hitachi ABWR faring any better than these two?   It wasn’t a contestant in the Ontario competition and so I haven’t been following it very closely. However, it does seem to be flying somewhat below the radar compared to the EPR and the AP1000.

These problems with its former competitors shouldn’t cause any joy in AECL. Its ACR-1000 is still firmly stuck on the drawing board with no realistic prospects of construction.  While their design “won” the Ontario competition, there is no indication that either the feds or Ontario are willing to incur yet more debt (another $20 to 30 billion or likely much more) in these tough economic times by building two ACRs at Darlington. The two levels of government are supposed to negotiating the cost split but I’m not optimistic.

Meanwhile there is no chance New Brunswick Power (now owned by Hydro Quebec) will build any new reactor after the Pt Lepreau refurbishment fiasco. Saskatchewan is fixated on a research reactor (but only if the feds ante up 75% of the costs).

That leaves Alberta with its own large deficit as the only other prospect for an ACR. Who knows maybe a reactor to get rid of it coal-fired generating plants would help in shielding the oilsands province from the attacks of the warmers? It’s probably better than just being perceived as a province of deniers since the warmers in spite of the recent allegations of scientific fraud have clearly won the day as the great Copenhagen dog and pony show unfolds.  Is that a realistic scenario?  Probably not!   

Let’s hope 2010 proves to be a better year for the nuclear enterprise than 2009.  

 

Isotope panel gets it right!

I was very pleased to see that the isotope panel’s report came up with the right answers and that I was wrong in my misgivings about its members.

 

 Yes. We do need a new multi-purpose research reactor if Canada is going to stay in the nuclear game. That’s their main conclusion and I agree completely.  I would have liked to have seen an additional statement that the new reactor should be at Chalk River. That would have finally killed the dangerous and naïve idea of locating an isotope processing facility with associated fission product storage on a university campus as has been suggested for Saskatchewan.

 

It’s great the panel also rejected the “full speed ahead and damn the torpedoes” attitude of the Maple resurrectionists. Macho doesn’t cut it when it comes to nuclear technology especially when the justification is simply commercial expediency. Speaking of money there was a clear statement that the Canadian taxpayer had long been subsidizing nuclear medicine in many countries around the world and by implication that it should stop. These subsidies end up in the hands of a long chain of middlemen and greedy medical specialists. They don’t do patients any good.  

 

Hopefully we’ve seen the last of the loopy accelerator ideas and I certainly would like to think more about the cyclotron concept. I was a bit surprised they didn’t list all the submissions in an appendix of some kind but that doesn’t really matter all that much.

 

Now it all boils down to whether the government will ante up the cash for a new reactor and who could build one. There’s the Opal in Australia built by Argentina, the new research reactor just sold by Korea to Jordan and my favorite the Jules Horowitz reactor in France. Maybe we could clone one of them.

 

The key point is Canada must have access to a high flux multi-purpose research reactor, either our own or as a member of an international partnership.